On Irregular Coloring of Some Generalised Graphs

A. Rohini¹, M. Venkatachalam² and Dafik³

1,2PG & Research Department of Mathematics
Kongunadu Arts and Science College
Coimbatore - 641 029, Tamil Nadu, India.
e-mail: rohinianbu@gmail.com
venkatmaths@gmail.com

3Department of Mathematics Education,
University of Jemper, CGANT-Research Group,
Jember - 68121, Indonesia.
e-mail: d.dafik@unej.ac.id

Abstract

Irregular coloring was introduced by Radcliffe and Zhang in 2006. Irregular coloring follows the condition: (i) proper coloring, (ii) distinct vertices have distinct color codes. The irregular chromatic number denoted by χ_{ir} . In this paper, we find the irregular chromatic number for the graphs, $M(nW_m)$, $T(nW_m)$, $L(nW_m)$, $C(nW_m)$, $M(nF_m)$, $T(nF_m)$, $L(nF_m)$, $C(nF_m)$, S(G) and $\mu(G)$.

2000 Mathematics subject classification: 05C15. Keywords: irregular coloring, middle graph, total graph, central graph, line graph, splitting graph, mycielski graph.

1 Introduction

In this paper we consider only simple, undirected and connected graphs. For a positive integer k and a proper coloring $c: V(G) \to \{1, 2, ..., k\}$ of the vertices of a graph G,

the color code [9] of a vertex v of G (with respect to c) is the ordered (k+1)-tuple $code_c(v) = (a_0, a_1, \ldots a_k)$ where a_0 is the color assigned to v (that is $c(v) = a_0$) and for $1 \leq i \leq k$, a_i is the number of vertices adjacent to v that are colored i.

The coloring c is called irregular[8] if distinct vertices of G have distinct color codes. The irregular chromatic number of G is denoted by $\chi_{ir}(G)$.

Let G be a graph with vertex set V(G) and edge set E(G). The *middle graph* [2] of G, denoted by M(G) is defined as follows: The vertex set of M(G) is $V(G) \cup E(G)$. Two vertices x, y of M(G) are adjacent in M(G) in case one of the following holds:

- (i) x, y are in E(G) and x, y are adjacent in G.
- (ii) x is in V(G), y is in E(G), and x, y are incident in G. The $total\ graph\ [14]$ of G, denoted by T(G) is defined as follows: The vertex set of T(G) is $V(G) \cup E(G)$. Two vertices x, y of T(G) are adjacent in T(G) in case one of the following holds:
- (i) x, y are in V(G) and x is adjacent to y in G.
- (ii) x, y are in E(G), x, y are adjacent in G.
- (iii) x is in V(G) and y is in E(G), and x, y are incident in G.

The central graph [14] C(G) of a graph G is obtained from G by adding an extra vertex on each edge of G, and then joining each pair of vertices of the original graph which were previously non-adjacent.

The line graph [4] of G denoted by L(G) is the graph whose vertex set is the edge set of G. Two vertices of L(G) are adjacent whenever the corresponding edges of G are adjacent.

Radcliffe and Zhang were introduced the concept irregular coloring in [8] and discussed the irregular chromatic bounds for the disconnected graph in [9]. The following papers [1, 6, 10, 11] are given some more results on irregular colorings. The neighbourhood of a vertex u in a graph G is $N(u) = \{v \in V(G) : uv \in E(G)\}$. In this paper, we have considered the following useful result from [7].

Let c be a (proper) coloring of the vertices of a nontrivial graph G and let u and v be two vertices of G then

$$Ifc(\mathbf{u}) \neq c(v)$$
, then $code(u) \neq code(v)$. (1)

$$Ifd(u) \neq d(v)$$
, then $code(u) \neq code(v)$. (2)

If c is irregular and
$$N(u)=N(v)$$
, then $c(u)\neq c(v)$. (3)

A wheel graph W_n [12] is defined as the graph $K_1 + C_n$, where K_1 is the singleton graph and C_n is the cycle graph on n vertices.

An **n-wheel graph** is a graph that can be constructed by $nC_m + K_1$, for $m \geq 3$, $n \geq 1$. It consists of n copies of cycle of order m, where the vertices of all cycles are joined to a common hub and is denoted by nW_m with size 2mn and order nm + 1.

An **n-fan graph** is a graph that can be constructed by $nP_m + K_1$, for $m \geq 3$, $n \geq 1$. It consists of n copies of path of order m, where the vertices of all paths are joined to a common hub and is denoted by nF_m .

For each point v of a graph G, take a new point v'. Join v' to all points of G adjacent to v. The graph S(G) thus obtained is called the *Splitting graph* [3, 13] of G.

Consider a graph G with $V(G) = \{v_1, v_2, \dots, v_n\}$. Apply the following steps to the graph G

- 1. Take the set of new vertices $U = \{u_1, u_2, \dots, u_n\}$ and add edges from each vertex u_i of U to the vertices v_j if the corresponding vertex v_i is adjacent to v_j in G,
- 2. Take another new vertex u and add edges to all elements in U.

The new graph thus obtained is called the *mycielski graph* or *mycielskian* of G and is denoted by $\mu(G)$ [3, 5].

2 Irregular Coloring of middle graph, total graph, central graph and line graph of *n*-wheel Graph

Theorem 2.1. For $m \geq 4$ and $n \geq 1$, the irregular chromatic number of n-wheel graph is $\chi_{ir}(M(nW_m)) = mn + 1$.

Proof. The vertex set $V\left[M\left(nW_{m}\right)\right]=\left\{x,a_{i}^{j},e_{i}^{j},f_{i}^{j},g_{1m}^{j}:1\leq j\leq n,1\leq i\leq m\right\}$, where e_{i}^{j} are the vertices on the edges xa_{i}^{j} for $1\leq j\leq n,1\leq i\leq m,$ f_{i}^{j} are the vertices on the rim edges $a_{i}^{j}a_{i+1}^{j}$ of nW_{m} for $1\leq j\leq n,1\leq i\leq m-1$ and g_{1m}^{j} are the vertices on the rim edges $a_{1}^{j}a_{m}^{j}$ of nW_{m} for $1\leq j\leq n$.

Consider the (mn + 1)-coloring for the given $M(nW_m)$ as follows:

- \bullet x=1
- $e_k^1 = k + 1$ for $1 \le k \le m$
- $e_{k-m}^2 = k+1$ for $m+1 \le k \le 2m$
- $e_{k-2m}^3 = k+1$ for $2m+1 \le k \le 3m$
- $e_{k-(n-1)m}^n = k+1$ for $(n-1)m+1 \le k \le nm$
- For $1 \le i \le m$, $1 \le j \le n \ a_i^j = 1$
- $g_{1m}^k = k + n(m-1)$ for $1 \le k \le n$
- $f_k^1 = k, \ 2 \le k \le m-1$
- $f_{k-(m-1)}^2 = k$ for $m \le k \le 2(m-1)$
- $f_{k-2(m-1)}^3 = k$ for $2m-1 \le k \le 3(m-1)$:
- $f_{k-(n-1)(m-1)}^n = k$ for $(m-1)n-m+2 \le k \le n(m-1)$
- $f_1^1 = mn + 1$.

All $d\left(f_{i}^{j}\right) \neq d\left(e_{i}^{j}\right)$ which implies that $code\left(f_{i}^{j}\right) \neq code\left(e_{i}^{j}\right)$. Hence, $\chi_{ir}(M(nW_{m})) \leq mn+1$. The set $\left\{x, e_{i}^{j} : 1 \leq j \leq n, 1 \leq i \leq m\right\}$ produce a clique of order mn+1. Therefore, $\chi_{ir}(M(nW_{m})) \geq mn+1$. Thus, $\chi_{ir}(M(nW_{m})) = mn+1$.

Theorem 2.2. For $m \geq 4$ and $n \geq 1$, the irregular chromatic number of n-wheel graph is $\chi_{ir}(T(nW_m)) = mn + 1$.

Proof. The vertex set $V[T(nW_m)] = \left\{x, a_i^j, e_i^j, f_i^j, g_{1m}^j : (1 \le j \le n), (1 \le i \le m)\right\}$, where e_i^j are the vertices on the edges xa_i^j for $(1 \le j \le n), (1 \le i \le m), f_i^j$ are the vertices on the rim edges $a_i^j a_{i+1}^j$ of nW_m for $(1 \le j \le n), (1 \le i \le m)$

 $(1 \le i \le m-1)$ and g_{1m}^j are the vertices on the rim edges $a_1^j a_m^j$ of nW_m for $(1 \le j \le n)$.

Consider the (mn + 1)-coloring for the given $T(nW_m)$ as follows:

- \bullet x=1
- $e_k^1 = k + 1$ for $1 \le k \le m$
- $e_{k-m}^2 = k+1$ for $m+1 \le k \le 2m$
- $e_{k-2m}^3 = k+1$ for $2m+1 \le k \le 3m$:
- $e_{k-(n-1)m}^n = k+1$ for $(n-1)m+1 \le k \le nm$
- $g_{1m}^k = k + n(m-1)$ for $1 \le k \le n$
- $f_k^1 = k, \ 2 \le k \le m-1$
- $f_{k-(m-1)}^2 = k$ for $m \le k \le 2(m-1)$
- $f_{k-2(m-1)}^3 = k$ for $2m 1 \le k \le 3(m-1)$:
- $f_{k-(n-1)(m-1)}^n = k \text{ for } (m-1) n m + 2 \le k \le n(m-1)$

- $f_1^1 = mn + 1$.
- $a_k^1 = k + 2 \text{ for } 1 \le k \le m$
- $a_{k-m}^2 = k+2 \text{ for } m+1 \le k \le 2m$
- $a_{k-2m}^3 = k+2$ for $2m+1 \le k \le 3m$:
- $a_{k-(n-1)m}^n = k+2$ for $(n-1)m+1 \le k \le mn-1$
- $\bullet \ a_m^n = 2.$

All $d\left(f_i^j\right) = d\left(a_i^j\right)$ but $code\left(f_i^j\right) \neq code\left(a_i^j\right)$, all $a_i^{j'}$ s are adjacent to x but all $f_i^{j'}$ s are not adjacent to x. Hence, $\chi_{ir}(T(nW_m)) \leq mn+1$. The set $\left\{x, e_i^j : 1 \leq j \leq n, 1 \leq i \leq m\right\}$ produce a clique of order mn+1. Therefore, $\chi_{ir}(T(nW_m)) \geq mn+1$. Thus, $\chi_{ir}(T(nW_m)) = mn+1$. \square

Theorem 2.3. For $m \geq 4$ and $n \geq 1$, the irregular chromatic number of n-wheel graph is $\chi_{ir}(L(nW_m)) = mn$.

Proof. The vertex set $V[L(nW_m)] = \left\{e_i^j, f_i^j, g_{1m}^j : 1 \le j \le n, 1 \le i \le m\right\}$, where e_i^j are the vertices convertion of these edges xa_i^j for $1 \le j \le n, 1 \le i \le m, f_i^j$ are the vertices convertion of these rim edges $a_i^j a_{i+1}^j$ of nW_m for $1 \le j \le n, 1 \le i \le m-1$ and g_{1m}^j are the vertices convertion of these rim edges $a_1^j a_m^j$ of nW_m for $1 \le j \le n$. Consider the mn-coloring for the given $L(nW_m)$ as follows:

- $e_k^1 = k$ for $1 \le k \le m$
- $e_{k-m}^2 = k$ for $m+1 \le k \le 2m$

•
$$e_{k-2m}^3 = k$$
 for $2m+1 \le k \le 3m$
:

- $e_{k-(n-1)m}^n = k \text{ for } (n-1)m+1 \le k \le nm$
- $g_{1m}^k = k 1 + n(m-1)$ for $1 \le k \le n$
- $f_k^1 = k 1, \ 2 \le k \le m 1$
- $f_{k-(m-1)}^2 = k-1$ for $m \le k \le 2(m-1)$
- $f_{k-2(m-1)}^3 = k-1$ for $2m-1 \le k \le 3(m-1)$:
- $f_{k-(n-1)(m-1)}^n = k-1$ for $(m-1)n-m+2 \le k \le n(m-1)$
- $f_1^1 = mn$.

All $d\left(f_i^j\right) \neq d\left(e_i^j\right)$ which implies that $code\left(f_i^j\right) \neq code\left(e_i^j\right)$. Hence, $\chi_{ir}(L(nW_m)) \leq mn$. The set $\left\{e_i^j: 1 \leq j \leq n, 1 \leq i \leq m\right\}$ produce a clique of order mn. Therefore, $\chi_{ir}(L(nW_m)) \geq mn$. Thus, $\chi_{ir}(L(nW_m)) = mn$.

Theorem 2.4. For $m, n \geq 3$, the irregular chromatic number of n-wheel graph is $\chi_{ir}(C(nW_m)) = n \left\lceil \frac{m}{2} \right\rceil$.

Proof. The vertex set $V\left[C\left(nW_{m}\right)\right] = \left\{x, a_{i}^{j}, e_{i}^{j}, f_{i}^{j}, g_{1m}^{j}: 1 \leq j \leq n, \ 1 \leq i \leq m\right\}$, where e_{i}^{j} are the vertices on the edges xa_{i}^{j} for $1 \leq j \leq n, \ 1 \leq i \leq m, \ f_{i}^{j}$ are the vertices on the rim edges $a_{i}^{j}a_{i+1}^{j}$ of nW_{m} for $1 \leq j \leq n, \ 1 \leq i \leq m-1$ and g_{1m}^{j} are the vertices on the rim edges $a_{1}^{j}a_{m}^{j}$ of nW_{m} for

 $1 \le j \le n$.

The coloring procedure of $C(nW_m)$ as follows:

 \bullet x=1

For m = 3, 4,

- $g_{1m}^1 = n \left\lceil \frac{m}{2} \right\rceil 1$
- $g_{1m}^2 = 1$
- $g_{1m}^k = 2$ for $3 \le k \le n$

For $m \geq 5$,

- $g_{1m}^k = n \left\lceil \frac{m}{2} \right\rceil$ for $1 \le k \le n 1$
- $g_{1m}^n = 1$

Case 1: m is even

- $f_i^j = n\left(\frac{m}{2}\right)$ for $1 \le j \le n-1, \ 1 \le i \le m$
- $f_i^n = n\left(\frac{m}{2}\right)$ for $1 \le i \le m 2$
- $\bullet \ f_m^n = f_{m-1}^n = 1$
- $e_{2k-1}^1 = k+1$ for $1 \le k \le \frac{m}{2}$
- $e_{2k-1}^2 = \frac{m}{2} + k + 1$ for $1 \le k \le \frac{m}{2}$
- $e_{2k-1}^3 = m+k+1 \text{ for } 1 \leq k \leq \frac{m}{2}$:
- $e_{2k-1}^n = (n-1)\frac{m}{2} + k + 1$ for $1 \le k \le \frac{m}{2} 1$
- $\bullet \ e_{m-1}^n = 2$

•
$$e_{2k}^1 = k + 2 \text{ for } 1 \le k \le \frac{m}{2}$$

•
$$e_{2k}^2 = \frac{m}{2} + k + 2$$
 for $1 \le k \le \frac{m}{2}$

•
$$e_{2k}^3 = m + k + 2$$
 for $1 \le k \le \frac{m}{2}$
:

•
$$e_{2k}^n = (n-1)\frac{m}{2} + k + 2$$
 for $1 \le k \le \frac{m}{2} - 2$

•
$$e_{m-2}^n = 2$$

$$\bullet \ e_m^n = 3$$

•
$$a_{2k-1}^1 = k$$
 for $1 \le k \le \frac{m}{2}$

•
$$a_{2k-1}^2 = \frac{m}{2} + k$$
 for $1 \le k \le \frac{m}{2}$

•
$$a_{2k-1}^3 = m+k$$
 for $1 \le k \le \frac{m}{2}$:

•
$$a_{2k-1}^n = (n-1)\frac{m}{2} + k$$
 for $1 \le k \le \frac{m}{2}$

•
$$a_{2k}^1 = k \text{ for } 1 \le k \le \frac{m}{2}$$

•
$$a_{2k}^2 = \frac{m}{2} + k$$
 for $1 \le k \le \frac{m}{2}$

•
$$a_{2k}^3 = m + k$$
 for $1 \le k \le \frac{m}{2}$
:

•
$$a_{2k}^n = (n-1)\frac{m}{2} + k$$
 for $1 \le k \le \frac{m}{2}$

Case 2: m is odd

•
$$f_i^j = n \left\lceil \frac{m}{2} \right\rceil$$
 for $1 \le j \le n - 1, \ 1 \le i \le m$

•
$$f_i^n = n \left\lceil \frac{m}{2} \right\rceil$$
 for $1 \le i \le m - 1$

$$\bullet \ f_m^n = 1$$

•
$$e_{2k-1}^1 = k+1$$
 for $1 \le k \le \left\lceil \frac{m}{2} \right\rceil$

•
$$e_{2k-1}^2 = \left\lceil \frac{m}{2} \right\rceil + k + 1 \text{ for } 1 \le k \le \left\lceil \frac{m}{2} \right\rceil$$

$$\bullet \ e_{2k-1}^3 = 2 \left\lceil \frac{m}{2} \right\rceil + k + 1 \text{ for } 1 \leq k \leq \left\lceil \frac{m}{2} \right\rceil$$

$$\vdots$$

•
$$e_{2k-1}^n = (n-1) \left\lceil \frac{m}{2} \right\rceil + k + 1$$
 for $1 \le k \le \left\lceil \frac{m}{2} \right\rceil - 1$

$$\bullet \ e_m^n = 2$$

•
$$e_{2k}^1 = k + 2$$
 for $1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$

•
$$e_{2k}^2 = \left\lceil \frac{m}{2} \right\rceil + k + 2 \text{ for } 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$$

•
$$e_{2k}^3 = 2 \left\lceil \frac{m}{2} \right\rceil + k + 2 \text{ for } 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$$
 :

•
$$e_{2k}^n = (n-1) \left\lceil \frac{m}{2} \right\rceil + k + 2 \text{ for } 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor - 1$$

$$\bullet \ e_{m-1}^n = 2$$

•
$$a_{2k-1}^1 = k \text{ for } 1 \le k \le \left\lceil \frac{m}{2} \right\rceil$$

•
$$a_{2k-1}^2 = \left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lceil \frac{m}{2} \right\rceil$$

•
$$a_{2k-1}^3 = 2\left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lceil \frac{m}{2} \right\rceil$$

:

•
$$a_{2k-1}^n = (n-1) \left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lceil \frac{m}{2} \right\rceil$$

•
$$a_{2k}^1 = k \text{ for } 1 \le k \le \left| \frac{m}{2} \right|$$

•
$$a_{2k}^2 = \left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$$

•
$$a_{2k}^3 = 2 \left\lceil \frac{m}{2} \right\rceil + k$$
 for $1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$:

•
$$a_{2k}^n = (n-1) \left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$$

All $d\left(a_i^j\right) \neq d\left(e_i^j\right)$ which implies that $code\left(a_i^j\right) \neq code\left(e_i^j\right)$. It is clear that the above coloring is an irregular coloring. Hence, $\chi_{ir}(C(nW_m)) \leq n \left\lceil \frac{m}{2} \right\rceil$. The set $\left\{a_{2i-1}^j: 1 \leq j \leq n, 1 \leq i \leq \left\lceil \frac{m}{2} \right\rceil\right\}$ produce a clique of order $n \left\lceil \frac{m}{2} \right\rceil$, thus $\chi_{ir}(C(nW_m)) \geq n \left\lceil \frac{m}{2} \right\rceil$. Therefore, $\chi_{ir}(C(nW_m)) = n \left\lceil \frac{m}{2} \right\rceil$.

3 Irregular Coloring of middle graph, total graph, central graph and line graph of *n*-fan Graph

Theorem 3.1. For $m \ge 4$ and $n \ge 1$, the irregular chromatic number of n-fan graph is $\chi_{ir}(M(nF_m)) = mn + 1$.

Proof. The vertex set $V\left[M\left(nF_{m}\right)\right]=\left\{x,a_{i}^{j},e_{i}^{j},f_{i}^{j}:1\leq j\leq n,\ 1\leq i\leq m\right\}$, where e_{i}^{j} are the vertices on the edges xa_{i}^{j} for $1\leq j\leq n,\ 1\leq i\leq m$ and f_{i}^{j} are the vertices on the rim edges $a_{i}^{j}a_{i+1}^{j}$ of nF_{m} for $1\leq j\leq n,\ 1\leq i\leq m-1$.

Consider the (mn + 1)-coloring for the given $M(nF_m)$ as follows:

- \bullet x=1
- $e_k^1 = k + 1$ for $1 \le k \le m$
- $e_{k-m}^2 = k+1$ for $m+1 \le k \le 2m$

•
$$e_{k-2m}^3 = k+1$$
 for $2m+1 \le k \le 3m$
:

•
$$e_{k-(n-1)m}^n = k+1$$
 for $(n-1)m+1 \le k \le nm$

• For
$$1 \le i \le m$$
, $1 \le j \le n$ $a_i^j = 1$

•
$$f_k^1 = k, \ 2 \le k \le m-1$$

•
$$f_{k-(m-1)}^2 = k$$
 for $m \le k \le 2(m-1)$

•
$$f_{k-2(m-1)}^3 = k$$
 for $2m-1 \le k \le 3(m-1)$
:

- $f_{k-(n-1)(m-1)}^n = k$ for $(m-1)n-m+2 \le k \le n(m-1)$
- $f_1^1 = mn + 1$.

All $d\left(f_i^j\right) \neq d\left(e_i^j\right)$ which implies that $code\left(f_i^j\right) \neq code\left(e_i^j\right)$. Hence, $\chi_{ir}(M(nF_m)) \leq mn+1$. The set $\left\{x, e_i^j : 1 \leq j \leq n, 1 \leq i \leq m\right\}$ produce a clique of order mn+1. Therefore, $\chi_{ir}(M(nF_m)) \geq mn+1$. Thus, $\chi_{ir}(M(nF_m)) = mn+1$.

Theorem 3.2. For $m \ge 4$ and $n \ge 1$, the irregular chromatic number of n-fan graph is $\chi_{ir}(T(nF_m)) = mn + 1$.

Proof. The vertex set $V\left[T\left(nF_{m}\right)\right]=\left\{x,a_{i}^{j},e_{i}^{j},f_{i}^{j}:1\leq j\leq n,\ 1\leq i\leq m\right\}$, where e_{i}^{j} are the vertices on the edges xa_{i}^{j} for $1\leq j\leq n,\ 1\leq i\leq m$ and f_{i}^{j} are the vertices on the rim edges $a_{i}^{j}a_{i+1}^{j}$ of nF_{m} for $1\leq j\leq n,\ 1\leq i\leq m$

m - 1.

Consider the (mn+1)-coloring for the given $T(nF_m)$ as follows:

- \bullet x=1
- $e_k^1 = k + 1$ for $1 \le k \le m$
- $e_{k-m}^2 = k+1$ for $m+1 \le k \le 2m$
- $e_{k-2m}^3 = k+1$ for $2m+1 \le k \le 3m$:
- $e_{k-(n-1)m}^n = k+1$ for $(n-1)m+1 \le k \le nm$
- $f_k^1 = k, \ 2 \le k \le m-1$
- $f_{k-(m-1)}^2 = k$ for $m \le k \le 2(m-1)$
- $f_{k-2(m-1)}^3 = k$ for $2m 1 \le k \le 3(m-1)$:
- $f_{k-(n-1)(m-1)}^n = k$ for $(m-1)n-m+2 \le k \le n(m-1)$
- $f_1^1 = mn + 1$.
- $a_k^1 = k + 2$ for $1 \le k \le m$
- $a_{k-m}^2 = k+2$ for $m+1 \le k \le 2m$
- $a_{k-2m}^3 = k+2$ for $2m+1 \le k \le 3m$:
- $a_{k-(n-1)m}^n = k+2$ for $(n-1)m+1 \le k \le mn-1$

•
$$a_m^n = 2$$
.

All $d\left(f_i^j\right) = d\left(a_i^j\right)$ but $code\left(f_i^j\right) \neq code\left(a_i^j\right)$, all $a_i^{j'}$ s are adjacent to x but all $f_i^{j'}$ s are not adjacent to x. Hence, $\chi_{ir}(T(nF_m)) \leq mn+1$. The set $\left\{x, e_i^j : 1 \leq j \leq n, 1 \leq i \leq m\right\}$ produce a clique of order mn+1. Therefore, $\chi_{ir}(T(nF_m)) \geq mn+1$. Thus, $\chi_{ir}(T(nF_m)) = mn+1$. \square

Theorem 3.3. For $m \geq 4$ and $n \geq 1$, the irregular chromatic number of n-fan graph is $\chi_{ir}(L(nF_m)) = mn$.

Proof. The vertex set $V\left[L\left(nF_{m}\right)\right]=\left\{e_{i}^{j},f_{i}^{j}:1\leq j\leq n,\ 1\leq i\leq m\right\}$, where e_{i}^{j} are the vertices convertion of the edges xa_{i}^{j} for $1\leq j\leq n,\ 1\leq i\leq m$ and f_{i}^{j} are the vertices convertion of the rim edges $a_{i}^{j}a_{i+1}^{j}$ of nF_{m} for $1\leq j\leq n,\ 1\leq i\leq m-1$.

Consider the mn-coloring for the given $L(nF_m)$ as follows:

- $e_k^1 = k$ for $1 \le k \le m$
- $e_{k-m}^2 = k \text{ for } m+1 \le k \le 2m$
- $e_{k-2m}^3 = k$ for $2m + 1 \le k \le 3m$:
- $e_{k-(n-1)m}^n = k$ for $(n-1)m+1 \le k \le nm$
- $g_{1m}^k = k 1 + n(m-1)$ for $1 \le k \le n$
- $f_k^1 = k 1, \ 2 \le k \le m 1$
- $f_{k-(m-1)}^2 = k-1$ for $m \le k \le 2(m-1)$

•
$$f_{k-2(m-1)}^3 = k-1$$
 for $2m-1 \le k \le 3(m-1)$
:

- $f_{k-(n-1)(m-1)}^n = k-1$ for $(m-1)n-m+2 \le k \le n(m-1)$
- $f_1^1 = mn$.

All
$$d\left(f_i^j\right) \neq d\left(e_i^j\right)$$
 which implies that $code\left(f_i^j\right) \neq code\left(e_i^j\right)$.
 Hence, $\chi_{ir}(L(nF_m)) \leq mn$. The set $\left\{e_i^j: 1 \leq j \leq n, 1 \leq i \leq m\right\}$ produce a clique of order mn . Therefore, $\chi_{ir}(L(nF_m)) \geq mn$. Thus, $\chi_{ir}(L(nF_m)) = mn$.

Theorem 3.4. For $m, n \geq 3$, the irregular chromatic number of n-fan graph is $\chi_{ir}(C(nF_m)) = n \lceil \frac{m}{2} \rceil$.

Proof. The vertex set $V\left[C\left(nF_{m}\right)\right]=\left\{x,a_{i}^{j},e_{i}^{j},f_{i}^{j}:1\leq j\leq n,\ 1\leq i\leq m\right\}$, where e_{i}^{j} are the vertices converted from the edges xa_{i}^{j} for $1\leq j\leq n,\ 1\leq i\leq m$ and f_{i}^{j} are the vertices converted from the rim edges $a_{i}^{j}a_{i+1}^{j}$ of nF_{m} for $1\leq j\leq n,\ 1\leq i\leq m-1$.

 \bullet x=1

Case 1: m is even

• $f_i^j = n\left(\frac{m}{2}\right)$ for $1 \le j \le n-1$, $1 \le i \le m$

The coloring procedure of $C(nF_m)$ as follows:

- $f_i^n = n\left(\frac{m}{2}\right)$ for $1 \le i \le m 2$
- $f_m^n = f_{m-1}^n = 1$
- $e_{2k-1}^1 = k+1$ for $1 \le k \le \frac{m}{2}$

•
$$e_{2k-1}^2 = \frac{m}{2} + k + 1$$
 for $1 \le k \le \frac{m}{2}$

•
$$e_{2k-1}^3 = m + k + 1$$
 for $1 \le k \le \frac{m}{2}$:

•
$$e_{2k-1}^n = (n-1)\frac{m}{2} + k + 1$$
 for $1 \le k \le \frac{m}{2} - 1$

•
$$e_{m-1}^n = 2$$

•
$$e_{2k}^1 = k + 2 \text{ for } 1 \le k \le \frac{m}{2}$$

•
$$e_{2k}^2 = \frac{m}{2} + k + 2$$
 for $1 \le k \le \frac{m}{2}$

•
$$e_{2k}^3 = m + k + 2$$
 for $1 \le k \le \frac{m}{2}$:

•
$$e_{2k}^n = (n-1)\frac{m}{2} + k + 2$$
 for $1 \le k \le \frac{m}{2} - 2$

•
$$e_{m-2}^n = 2$$

•
$$e_m^n = 3$$

•
$$a_{2k-1}^1 = k$$
 for $1 \le k \le \frac{m}{2}$

•
$$a_{2k-1}^2 = \frac{m}{2} + k$$
 for $1 \le k \le \frac{m}{2}$

•
$$a_{2k-1}^3 = m+k$$
 for $1 \le k \le \frac{m}{2}$
:

•
$$a_{2k-1}^n = (n-1)\frac{m}{2} + k$$
 for $1 \le k \le \frac{m}{2}$

•
$$a_{2k}^1 = k$$
 for $1 \le k \le \frac{m}{2}$

•
$$a_{2k}^2 = \frac{m}{2} + k$$
 for $1 \le k \le \frac{m}{2}$

•
$$a_{2k}^3 = m + k$$
 for $1 \le k \le \frac{m}{2}$:

•
$$a_{2k}^n = (n-1)\frac{m}{2} + k \text{ for } 1 \le k \le \frac{m}{2}$$

Case 2: m is odd

•
$$f_i^j = n \left\lceil \frac{m}{2} \right\rceil$$
 for $1 \le j \le n - 1, \ 1 \le i \le m$

•
$$f_i^n = n \left\lceil \frac{m}{2} \right\rceil$$
 for $1 \le i \le m - 1$

•
$$f_m^n = 1$$

•
$$e_{2k-1}^1 = k+1 \text{ for } 1 \le k \le \lceil \frac{m}{2} \rceil$$

•
$$e_{2k-1}^2 = \left\lceil \frac{m}{2} \right\rceil + k + 1$$
 for $1 \le k \le \left\lceil \frac{m}{2} \right\rceil$

•
$$e_{2k-1}^3 = 2 \left\lceil \frac{m}{2} \right\rceil + k + 1$$
 for $1 \le k \le \left\lceil \frac{m}{2} \right\rceil$:

•
$$e_{2k-1}^n = (n-1) \left\lceil \frac{m}{2} \right\rceil + k + 1 \text{ for } 1 \le k \le \left\lceil \frac{m}{2} \right\rceil - 1$$

$$\bullet$$
 $e_m^n = 2$

•
$$e_{2k}^1 = k + 2 \text{ for } 1 \le k \le \left| \frac{m}{2} \right|$$

•
$$e_{2k}^2 = \left\lceil \frac{m}{2} \right\rceil + k + 2 \text{ for } 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$$

•
$$e_{2k}^3 = 2 \left\lceil \frac{m}{2} \right\rceil + k + 2 \text{ for } 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$$

•
$$e_{2k}^n = (n-1) \lceil \frac{m}{2} \rceil + k + 2 \text{ for } 1 \le k \le \lceil \frac{m}{2} \rceil - 1$$

•
$$e_{m-1}^n = 2$$

•
$$a_{2k-1}^1 = k$$
 for $1 \le k \le \left\lceil \frac{m}{2} \right\rceil$

•
$$a_{2k-1}^2 = \left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lceil \frac{m}{2} \right\rceil$$

•
$$a_{2k-1}^3 = 2\left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lceil \frac{m}{2} \right\rceil$$

:

- $a_{2k-1}^n = (n-1) \left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lceil \frac{m}{2} \right\rceil$
- $a_{2k}^1 = k \text{ for } 1 \le k \le \left| \frac{m}{2} \right|$
- $a_{2k}^2 = \left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$
- $a_{2k}^3 = 2 \left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$:
- $a_{2k}^n = (n-1) \left\lceil \frac{m}{2} \right\rceil + k \text{ for } 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$

All $d\left(a_i^j\right) \neq d\left(e_i^j\right)$ which implies that $code\left(a_i^j\right) \neq code\left(e_i^j\right)$. It is clear that the above coloring is an irregular coloring. Hence, $\chi_{ir}(C(nF_m)) \leq n \left\lceil \frac{m}{2} \right\rceil$. The set $\left\{a_{2i-1}^j : 1 \leq j \leq n, \ 1 \leq i \leq \left\lceil \frac{m}{2} \right\rceil\right\}$ produce a clique of order $n \left\lceil \frac{m}{2} \right\rceil$, thus $\chi_{ir}(C(nF_m)) \geq n \left\lceil \frac{m}{2} \right\rceil$. Therefore, $\chi_{ir}(C(nF_m)) = n \left\lceil \frac{m}{2} \right\rceil$.

4 Irregular Coloring of Splitting graph and Mycielskian graph of any graph

Theorem 4.1. For any graph G, the irregular chromatic number $\chi_{ir}(S(G)) = \chi_{ir}(G)$.

Proof. Let $\{v_i: (1 \leq i \leq n)\}$ be the vertex set of the graph G and assume that graph G has an irregular coloring partition. Let $\{v_i, v_i^{'}: (1 \leq i \leq n)\}$ be the vertex set of splitting graph of G, i.e., S(G). The degree of the vertices $d(v_i) = 2d(v_i^{'})$, assume that same colors assigned to v_i and

 v_i' . Here, $d(v_i) \neq d(v_i')$. By equation (2), which implies that $code(v_i) \neq code(v_i')$. Hence the irregular chromatic number, $\chi_{ir}(S(G)) = \chi_{ir}(G)$.

Theorem 4.2. For any graph G, the irregular chromatic number $\chi_{ir}(\mu(G)) = \chi_{ir}(G) + 1$.

Proof. Let $\{v_i : (1 \le i \le n)\}$ be the vertex set of the graph G and assume that graph G has an irregular coloring partition. Let $\{v_i, v_i', w : (1 \le i \le n)\}$ be the vertex set of mycielskian graph of G, i.e., $\mu(G)$. The degree of the vertices $d(v_i) = 2(d(v_i') - 1)$, assume that same colors to v_i and v_i' and a new color to the vertex w. Here, $d(v_i) \ne d(v_i')$. By equation (2), which implies that $code(v_i) \ne code(v_i')$. Hence the irregular chromatic number,

 $\chi_{ir}(\mu(G)) = \chi_{ir}(G) + 1.$

References

 M. Anderson, R. Vitray and J. Yellen, Irregular colorings of regular graphs, Discrete Mathematics, 312, No.15, (2012), 2329-2336.

- [2] Danuta Michalak, On middle and total graphs with coarseness number equal 1, Springer Verlag Graph Theory, Lagow proceedings, Berlin Heidelberg, New York, Tokyo, (1981), 139-150.
- [3] J. A. Gallian, A dynamic survey of graph labeling, The electronic journal of combinatorics, 18, (2011), Dynamic survey 6.

- [4] F. Harary, Graph Theory, Narosa Publishing home, New Delhi (1969).
- [5] J. Mycielski, Sarlecoloriagedes graphes, Coll.Math., 3, (1955), 161-162.
- [6] F. Okamoto, M. Radcliffe, P. Zhang, On the irregular chromatic number of a graph, Congr. Numer., 181, (2006), 129-150.
- [7] Ping Zhang, A Kaleidoscopic View of Graph Colorings, Springer International Publication, AG Switzerland (2016).
- [8] M. Radcliffe, P. Zhang, Irregular coloring of graphs, Bulletin of the Institute of Combinatorics and its Applications, 49, (2007), 41-59.
- [9] M. Radcliffe, P. Zhang, On Irregular coloring of graphs, AKCE Journal of Graphs and Combinatorics, 3, No.2, (2006), 175-191.
- [10] A. Rohini, M. Venkatachalam, On irregular colorings of double wheel graph families, Communications, Faculty of Science, University of Ankara, Series A1 Mathematics and Statistics, 68, No.1, (2019), 944-949.
- [11] A. Rohini, M. Venkatachalam, On irregular colorings of fan graph families, IOP Conf. Series: J. Phy., 1139, (2018), 012061(1-6).
- [12] S. Roy, Packing chromatic number of certain fan and wheel related graphs, AKCE International Journal of Graphs and Combinatorics, 14, (2017), 63-69.

- [13] E. Sampathkumar, H. B. Walikar, On Splitting graph of graph, J. Karnatak Univ. Sci., 25 and 26(Combined), (1980-81), 13-16.
- [14] J. Vernold Vivin, Harmonious coloring of total graphs, n-leaf, central graphs and circumdetic graphs, Bharathiar University, (2007), Ph.D Thesis, Coimbatore, India.